منبع مقاله درباره سلسله مراتب، کنترل هوشمند، نرم افزار

و منحنی بازده موتور احتراقی 133
شکل(2-5) نقاط کار بهینه و منحنی بازده موتور الکتریکی 133
شکل(3-5) نقاط کار بهینه و منحنی بازده باتری 134
شکل(4-5) زیر حالت مربوط به مد هایبرید(1) 137
شکل(5-5) زیر حالت مربوط به مد هایبرید(2) 138
شکل(6-5) زیر حالت مربوط به مد هایبرید(2) 139
شکل(7-5) زیر حالت مربوط به مد هایبرید 140
شکل(8-5) حالت مربوط به مد شارژ مجدد باتریها 141
شکل(9-5) مدهای کنترلی در مد رانشی 141
شکل(10-5) مدهای کنترلی در مد ترمزی 142
شکل(11-5) ساختار کنترل سلسله مراتبی خودرو هایبرید برقی به همراه مدل سازی دینامیکی خودرو هایبرید 143
شکل(12-5) سیکل رانشی CYC_CHSVR 144
شکل(13-5) گشتاور موتور الکتریکی (Tem) و گشتاور موتور احتراقی (Tice) 144
شکل(14-5) منحنی تغییرات نقطه کار موتور احتراقی 145
شکل(15-5) حالت شارژ باتری ها را نشان می دهد 146
شکل(16-5) سرعت خودرو پس از دنبال کردن مسیر حرکت 146
شکل(17-5) شبیه سازی استراتژی کنترل Baseline 147
شکل(18-5) سیکل رانشی CYC_ECE 147
شکل(19-5)نتایج شبیه سازی روی سیکل CYC_ECE 148
شکل(20-5) سرعت خودرو را نشان می دهد. 148
شکل(1-ض1) ساختار اصلی سیستم های فازی خالص 161
شکل(2-ض1) ساختار اصلی سیستم فازی TSK 161
شکل(3-ض1) ساختار اصلی یک سیستم فازی با فازی ساز و غیر فازی ساز 162
شکل(4-ض1) تابع عضویت ? را برحسب e(t) نشان می دهد. 163
شکل(5-ض1) نمایش گرافیکی غیر فازی ساز مرکز ثقل 165
شکل(6-ض1) نمایش گرافیکی غیر فازی ساز میانگین مراکز 165
شکل(7-ض1) ساختار سیستم فازی تولید شده توسط ANFIS 168
شکل(8-ض1) مراحل طراحی سیستم فازی با ANFIS 169
شکل (1-ض2) ساختار یک ماشین حالت محدود در محیط stateflow 172
جدول (1-ض3) مشخصات موتور القایی 175
جدول (2-ض3) مشخصات موتور DC 176
شکل(3-ض3) منحنی بازده موتور DC 176
شکل(4-ض3) منحنی بازده موتور احتراقی 177
جدول (3-ض3)مشخصات خودرو 178
جدول (4-ض3)مشخصات خودرو 178
آلودگی شهرهای بزرگ سالهاست که به یک مسئله حاد تبدیل شده است. تحقیقات کارشناسی نشان می دهد که علّت اصلی آلودگی شهرها، خودروهایی با موتور احتراق داخلی می باشند. خودروهای احتراقی معایب فراوانی دارند که از آن جمله می توان به مواردی چون وابستگی به یک نوع انرژی خاص (نفت)، تولیدگازهای گلخانه ای مانند ،تولید گازهای سمی مانند،و، تولید آلودگی صوتی، راندمان پائین سیستم و در نتیجه اتلاف انرژی اشاره نمود. با توجه به موارد فوق خودروهای برقی از دهه 1890مطرح شده و تا دهه 1930 پر طرفدار بوده اند. با پیشرفت خودروهای احتراقی، خودروهای برقی کم کم به فراموشی سپرده شدند تا اینکه در سال 1960 به بعد مجدداً با توجه به مشکلات خودروهای احتراقی، محققین به فکر چاره افتادند و تحقیقات مختلفی را در مورد خودروهای برقی آغاز نموده اند. خودروهای هایبرید برقی نوع تعمیم یافته خودروهای برقی خالص می باشند که معایب خودروهای برقی خالص تا حدودی در آنها برطرف گردیده است. در حقیقت این خودروها حد واسطی بین خودروهای متداول با موتور احتراقی و خودروهای برقی خالص می باشند.استفاده از موتور الکتریکی با راندمان بالا، امکان بازیابی انرژی و قابلیت جابجائی نقطه کار موتور احتراقی به نواحی با راندمان بهینه،کاهش آلودگی و افزایش راندمان کلی این خودروها را فراهم ساخته است.
انواع خودروهای هایبرید
به طور کلی یک خودروی هایبرید از یک سیستم ذخیره ساز انرژی، یک واحد تولید قدرت و یک سیستم انتقال تشکیل شده است. موتورهای احتراق داخلی جرقه زن، موتورهای تزریق مستقیم احتراقی، توربینهای گازی و پیل های سوختی می توانند به عنوان واحد تولید قدرت ایفای نقش کنند که با ترکیب مختلف آنها و استفاده از یک موتور الکتریکی می توان نیروی محرکه رانشی خودرو را فراهم نمود.
برای واحد ذخیره انرژی می توان فلای ویل، خازن ها، باتریها را مد نظر داشت. اما در میان این انتخاب ها باتریها بیشترین کاربرد را دارند. سیستم انتقال متشکل از ادوات مکانیکی جعبه دنده، چرخ دنده ها، دیفرانسیل، کلاچ و… می باشد.
با توجه به ساختار کنترلی و روش اتصال اجزاء به یکدیگر خودروهای هایبرید به سه دسته زیر تقسیم می شوند:
1-خودروهای هایبرید سری
2- خودروهای هایبرید موازی
3-خودروهای هایبرید ترکیبی(سری-موازی)
در خودروهای سری موتور الکتریکی محرک اصلی رانشی است. در واقع مجموعه باتریها،موتور الکتریکی با توان نسبتاً بالا را تغذیه می کنند. در شرایطی که حالت شارژ باتری از کمترین مقدار مجاز کاهش پیدا کند در این موقع موتور احتراقی شروع بکار کرده و با چرخاندن ژنراتور باعث شارژ شدن باتری ها می شود.طبیعی است که این عمل باعث افزایش محدوده رانشی خودرو می گردد.
در نوع موازی، خودرو علاوه بر محرکه رانشی الکتریکی (موتور الکتریکی) از موتور احتراقی نیز سود می برد. در این نوع، موتور الکتریکی در حالتی که خودرو در مد احتراقی تنها کار می کند در نقش یک ژنراتور باعث شارژ شدن باتریها خواهد شد. بسته به نوع استراتژی کنترلی ممکن است در ابتدای امر،موتور الکتریکی شروع بکار نموده ( در سرعتهای پائین ) و بعد از آن موتور احتراقی وارد سیستم خواهد شد.( در سرعتهای بالا) .
خودروی هایبرید ترکیبی در واقع ترکیبی از دو سیستم سری-موازی است. مولفه های سیستم رانشی در خودروهای هایبرید ترکیبی عبارتند از:
1-دو منبع تولید توان،یک موتور احتراقی یا پیل سوختی و… بهمراه یک موتور ترکشن جهت ایجاد نیروی محرکه و بازیابی انرژی.
2-سیستم انتقال متغیر پیوسته،CVT1
3- یک کلاچ الکترو مغناطیسی برای سیستم انتقال توان
4-یک موتور الکتریکی کوچک برای تولید انرژی الکتریکی(شارژ)و استارت موتور احتراقی
5- باتریها
نحوه ارتباط اجزاء این سیستم در حالتهای مختلف حرکتی ،توسط واحد های کنترل کننده صورت می پذیرد. دو نکته ای که می بایست در مورد خودروهای برقی هایبرید مورد توجه قرار گیرد یکی مسئله بازیابی انرژی در روند کاهش سرعت و ترمز توسط موتور الکتریکی می باشد که می تواند به نوعی باعث بهبود در مصرف انرژی شود . نکته دوم عدم آلایندگی بخاطر عدم مصرف سوخت در شرایط توقف می باشد.در این حالت ، که ناشی از مسئله ترافیک شهری می باشد خودرو در مد الکتریکی کار می کند و در نتیجه باعث کاهش آلودگی خواهد شد.
استراتژی های کنترلی در خودروهای هایبرید برقی
تا کنون استراتژیهای کنترلی مختلفی برای مدیریت بهینه انرژی در خودرو های هایبرید برقی ارائه شده است. استراتژیهای کنترلی یا مدیریت انرژی برای خودرو های هایبرید برقی اساساً برای برآورده کردن چندین هدف همزمان بکار می روند. نخستین هدف معمولاً مینیمم کردن مصرف سوخت می باشد و همچنین تلاش برای کاهش آلودگی و برآورده کردن قابلیت رانشی خودرو از اهداف اصلی می باشد. بدون توجه به ساختار خودرو هایبرید برقی، هدف اصلی استراتژی کنترل، مدیریت لحظه ای انتقال توان بین منابع انرژی و دست یابی به اهداف کنترلی اصلی می باشد. یکی از مشخصه های مهم استراتژی کنترل ، این است که اهداف کنترلی اکثراً بصورت انتگرالی هستند (مصرف سوخت و آلودگی در هر مایل مسیر) یا بصورت شبه محلّی در زمان هستند (قابلیت رانشی در هر بازه زمانی). در حالیکه عملکرد های کنترلی بصورت محلّی در زمان هستند. علاوه بر این اهداف کنترلی اغلب تحت قید های انتگرالی ، نظیر نگداشتن حالت شارژ باتریها در محدوده مطلوب ، هستند. طبیعت کلّی همه اهداف و قیدها نمی تواند منجر به تکنیکهای بهینه سازی کلّی گردد ، زیرا که آینده در یک شرایط حرکت واقعی نامشخص می باشد. برای این منظور بعضی از روشها وجود دارد که براساس نتایج حاصل از بهینه سازی کلّی روی یک سیکل از پیش تعیین شده ، استراتژی کنترل را بنا می نهند. ولی این روشها بطور مستقیم منجر به پیاده سازی عملی نمی شوند، زیرا مسئله اصلی با معیار بهینه سازی کلّی این است که کلّ برنامه رانشی باید از پیش تعیین شده باشد و در این حالت استراتژی کنترل زمان واقعی به آسانی پیاده سازی نمی شود. برای این منظور در این پایان نامه، با توجه به پیچیدگی سیستم محرکه رانشی خودرو هایبرید برقی به بررسی یک استراتژی کنترل سلسله مراتبی برای خودرو هایبرید برقی پرداخته شده است. برای این منظور ابتدا مدلسازی دینامیکی زیر سیستم ها انجام گرفته ، سپس برای هر یک از زیر سیستم ها کنترل کننده محلّی مربوط به خودش طراحی می شود. پس از آن برای دستیابی به اهداف عملکردی، استراتژی سوئیچینگ بین زیر سیستمها برای رسیدن به استراتژی کنترل زمان واقعی طراحی می گردد.
محتوای فصلهای بعدی
هدف اصلی این پایان نامه دست یابی به یک استراتژی کنترل زمان واقعی برای خودرو هایبرید برقی می باشد. برای این منظور ابتدا در فصل اوّل به شناسایی استراتژیهای کنترلی موجود پرداخته شده است. در فصل دوّم ، به علت اینکه در انجام این پایان نامه از روشهای هوشمند نیز استفاده شده است، استراتژی های کنترل هوشمند بررسی گردیده است. در فصل سوم ساختار کنترل سلسله مراتبی خودرو هایبرید برقی به عنوان یک سیستم هایبرید با تاکید بر مدلسازی دینامیکی زیر سیستمها، مورد بررسی قرار گرفته است. در فصل چهارم به طراحی استراتژی کنترل هوشمند سلسله مراتبی برای خودرو هایبرید برقی پرداخته شده است و در فصل پنجم استراتژی کنترل سلسله مراتبی زمان واقعی برای خودرو هایبرید برقی و شبیه سازی آن توضیح داده شده است.
(فصل اوّل)
استراتژیهای کنترلی در خودرو های
هایبرید برقی
مقدمه
3) ماکزیمم گشتاور مثبت از موتور الکتریکی ، براساس محدودیت اعمال شده توسط باتری.
بیشترین گشتاور منفی موتور الکتریکی کران دیگر محدوده نقاط کار کاندید را تعیین می کند. این مقدار ماکزیمم سه مقدار زیر می باشد.
1) تفاوت بین گشتاور درخواستی راننده و ماکزیمم گشتاور مثبت موتور احتراقی.
2) بیشترین گشتاور نامی منفی موتور الکتریکی در سرعت فعلی (موتور در نقش ژنراتور)
3) بیشترین گشتاور منفی موتور الکتریکی ، متناظر محدودیت مربوط به قابلیت باتری.
گام 2) محاسبه فاکتور های تشکیل دهنده بهینه سازی برای هر نقطه کار کاندید
در این مرحله کل انرژی مصرفی که ترکیبی از سوخت مصرف شده واقعی بوسیله موتور احتراقی و مصرف سوخت موثر بوسیله باتریها و موتور الکتریکی می باشد ، و آلودگی در طول تمام ترکیبهای مجازگشتاور موتور احتراقی-موتور الکتریکی محاسبه می شود. اینک به محاسبه کل انرژی مصرفی می پردازیم:
1-2) انرژی سوخت مصرف شده در موتور احتراقی:
انرژی سوخت مصرف شده در یک موتور احتراقی تحت تاثیر دو عامل می باشد:
الف) گرما ، منحنی های سوخت موتور احتراقی در حالت دائم.
ب) فاکتور های تصحیح دما.
براساس رابطه (21-1) برای یک گشتاور درخواستی و گشتاور موتور الکتریکی، گشتاور موتور احتراقی محاسبه می شود. در این گشتاور وسرعت داده شده، منحنی بازده مربوط به مصرف سوخت موتور احتراقی، مقدار سوخت مصرف شده بوسیله موتور احتراقی را هنگامی که آن گرم باشد، می دهد. برای نمونه شکل (6-1) نمایانگر منحنی بازده انرژی موتور احتراقی می باشد.
شکل(6-1) منحنی بازده انرژی موتور احتراقی
یک موتور احتراقی سرد نسبت به موتور احتراقی گرم آلودگی بیشتری تولید می کند. برای در نظر گرفتن این عوامل، استراتژی کنترل از عوامل تصحیح دما براساس مدل موتور احتراقی موجود در نرم افزار ADVISOR استفاده می کند. این مدل خروجیهای موتور احتراقی را بوسیله رابطه (22-1) تنظیم می کند:
(22-1)
Cold_Use : مصرف خروجی در حالت سرد
Hot_Use : مصرف خروجی در حال

مطلب مرتبط :   مقاله رایگان درموردصورت های مالی، سرمایه گذاران، اندازه گیری، گزارشگری مالی

دیدگاهتان را بنویسید